“…5 and inserting(4.18),(4.19) and(4.26) in the previous estimate, we get|V I| ≤ C|h| 2 BR |Du(x)| log n (e + |Du| 1 ) dx + 1Inserting estimates (4.9), (4.12), (4.13), (4.22), (4.27) and (4.28) in (4.8), we infer the existence of constantsC ε ≡ C ε (ε, ν, L, ℓ, n, γ 1 , γ 2 , R) and C ≡ C(ν, L, ℓ, n, γ 1 , γ 2 , R) such that ν ˆΩ η 2 |τ h Du(x)| 2 (1 + |Du(x + h)| 2 + |Du(x)| 2 |) ˆΩ η 2 |τ h Du(x)| 2 (1 + |Du(x + h)| 2 + |Du(x)| 2 |) (H 2 + H 3 + H 4 + H 5 + H 6 ) Choosing ε = ν 6 we get ν ˆΩ η 2 |τ h Du(x)| 2 (1 + |Du(x + h)| 2 + |Du(x)| 2 |) H 2 + H 3 + H 4 + H 5 + H 6 isa finite quantity. Using Lemma 3.1 in the left hand side of previous estimate and recalling that η ≡ 1 on B R |τ h V γ1 (Du(x))| 2 dx ≤ H|h| 2 Lemma 3.6 implies that V γ1 (Du) ∈ W 1,2 (B R…”