“…Let us compute the approximate value of r n,n for large values of n. By setting r = 1−x/n in k(n, r), and making use of the fact that (1 − x/n) n ≤ e −x for x ≥ 0, we get that k(n, 1 − x/n) ≤ t(x, n), where t(x, n) := 177e −x n 8 50x 8 2 − x n 9 q(x, n) 16n 4 − 32n 3 x + 28n 2 x 2 − 12nx 3 + 3x 4 , with q(x, n) = n[n 3 (24 + 24x + 12x 2 + 4x 3 + x 4 ) − 6n 2 x(6 + 4x + x 2 ) + 2nx 2 (7 + 2x) − x 3 ].…”