2018
DOI: 10.1371/journal.pone.0206608
|View full text |Cite
|
Sign up to set email alerts
|

Regularization and grouping -omics data by GCA method: A transcriptomic case

Abstract: The paper presents the application of Grade Correspondence Analysis (GCA) and Grade Correspondence Cluster Analysis (GCCA) for ordering and grouping -omics datasets, using transcriptomic data as an example. Based on gene expression data describing 256 patients with Multiple Myeloma it was shown that the GCA method could be used to find regularities in the analyzed collections and to create characteristic gene expression profiles for individual groups of patients. GCA iteratively permutes rows and columns to ma… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 26 publications
0
2
0
1
Order By: Relevance
“…One of the most effective ways to achieve improved results is to combine basic statistical techniques (also called gold standard methods) with innovative approaches like regulated canonical analysis (rCCA) [29] or regularization and grouping data by GCA method [30] [31]. This ensures effective analysis of data in which the number of variables significantly exceeds the number of observations [29,32] [12].…”
Section: Availability and Future Directionsmentioning
confidence: 99%
“…One of the most effective ways to achieve improved results is to combine basic statistical techniques (also called gold standard methods) with innovative approaches like regulated canonical analysis (rCCA) [29] or regularization and grouping data by GCA method [30] [31]. This ensures effective analysis of data in which the number of variables significantly exceeds the number of observations [29,32] [12].…”
Section: Availability and Future Directionsmentioning
confidence: 99%
“…Si bien se ha demostrado que los artículos en acceso abierto reciben 18% más de citas (Piwowar et al, 2018), la práctica de ciencia abierta depende en gran medida de la creación de infraestructura de colaboración que permita la inclusión de herramientas digitales como plataformas para el trabajo conjunto, así como estándares de calidad y sistemas de evaluación similares. En cuanto a la documentación y registro abierto, los cuales son fundamentales para asegurar la reproducibilidad del conocimiento científico, no siempre se encuentran disponibles a causa de una falla u omisión disciplinar, pero también de políticas poco claras o de algún interés comercial para el uso de la data.…”
Section: Introductionunclassified
“…• CUR-based initialization: the factor matrix W is constructed as a submatrix (with a small number of actual columns) of the data matrix X. In this way, values are obtained that are more interpretable from a biological point of view (and usually to the same extent as the original data) [50,51]. CUR-based mechanisms differ in the "statistical" way of selecting columns (or rows, if we refer to the initialization of the factor H) from the matrix X.…”
mentioning
confidence: 99%