Regularization Effects in Deep Learning Architecture
Muhammad Dahiru Liman,
Salamatu Ibrahim Osanga,
Esther Samuel Alu
et al.
Abstract:This research examines the impact of three widely utilized regularization approaches -- data augmentation, weight decay, and dropout --on mitigating overfitting, as well as various amalgamations of these methods. Employing a Convolutional Neural Network (CNN), the study assesses the performance of these strategies using two distinct datasets: a flower dataset and the CIFAR-10 dataset. The findings reveal that dropout outperforms weight decay and augmentation on both datasets. Additionally, a hybrid of dropout … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.