This article explores U-Statistics as a tool for testing conditional correlation between two multivariate sources with respect to a potential confounder. The proposed approach is effectively an instance of weighted U-Statistics and does not impose any statistical model on the processed data, in contrast to other well-known techniques that assume Gaussianity. By avoiding determinants and inverses, the method presented displays promising robustness in small-sample regimes. Its performance is evaluated numerically through its MSE and ROC curves.