Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L1 (0.562 mm) and OMP-L0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.