This paper concerns cross-lingual acoustic modeling in the case when there are limited target language resources. We build on an approach in which a subspace Gaussian mixture model (SGMM) is adapted to the target language by reusing the globally shared parameters estimated from out-of-language training data. In current cross-lingual systems, these parameters are fixed when training the target system, which can give rise to a mismatch between the source and target systems. We investigate a maximum a posteriori (MAP) adaptation approach to alleviate the potential mismatch. In particular, we focus on the adaptation of phonetic subspace parameters using a matrix variate Gaussian prior distribution. Experiments on the GlobalPhone corpus using the MAP adaptation approach results in word error rate reductions, compared with the cross-lingual baseline systems and systems updated using maximum likelihood, for training conditions with 1 hour and 5 hours of target language data.