2024
DOI: 10.1007/s13389-024-00361-5
|View full text |Cite
|
Sign up to set email alerts
|

Regularizers to the rescue: fighting overfitting in deep learning-based side-channel analysis

Azade Rezaeezade,
Lejla Batina

Abstract: Despite considerable achievements of deep learning-based side-channel analysis, overfitting represents a significant obstacle in finding optimized neural network models. This issue is not unique to the side-channel domain. Regularization techniques are popular solutions to overfitting and have long been used in various domains. At the same time, the works in the side-channel domain show sporadic utilization of regularization techniques. What is more, no systematic study investigates these techniques’ effective… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 23 publications
0
0
0
Order By: Relevance