2022
DOI: 10.48550/arxiv.2208.01541
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Regularly abstract convex functions with respect to the set of Lipschitz continuous concave functions

Abstract: Given a set H of functions defined on a set X, à function f : X Þ Ñ R is called abstract H-convex if it is the upper envelope of its H-minorants, i.e., such its minorants which belong to the set H; and f is called regularly abstract H-convex if it is the upper envelope of its maximal (with respect to the pointwise ordering) H-minorants. In the paper we first present the basic notions of (regular) H-convexity for the case when H is an abstract set of functions. For this abstract case a general sufficient condit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?