Direct-seeded rice is a promising option because it saves water and labor, and it increases productivity. Nonetheless, few studies have evaluated the transition from traditionally transplanted rice to direct-seeded rice. Here we compared yield, water productivity, and greenhouse gas emissions of dry direct-seeded rice, wet direct-seeded rice, and transplanted rice in Central China in 2014 and 2015. We grew four rice cultivars: Huanghuazhan, LvdaoQ7, Yangliangyou6, and Yliangyou1. We measured grain yield, yield components, water consumption, water productivity, and greenhouse gas emissions. Our results show that the grain yield of wet direct-seeded rice was 10.8 % higher than that of transplanted rice, when averaged across cultivars and both years. Grain yield of dry direct-seeded rice and transplanted rice was similar. Water productivity of dry direct-seeded rice was 11.6 % higher than that of transplanted rice. Water productivity of wet direct-seeded rice was 13.4 % higher than that of transplanted rice. Global warming potential was 76.2 % lower for dry direct-seeded rice and 60.4 % lower for wet direct-seeded rice than for transplanted rice. Wet direct-seeded rice was found to be more susceptible to lodging than dry direct-seeded rice and transplanted rice. Overall, wet direct-seeded rice is the best system for Central China due to higher grain yield and water productivity and lower global warming potential. Dry directseeded rice may also be suitable for some regions where water is scarce for soil puddling during land preparation.