In B-cell chronic lymphocytic leukemia (B-CLL) cells, Lyn, a tyrosine kinase belonging to the Src family, is overexpressed and atypically localized in an aberrant cytosolic complex in an active conformation, contributing to the unbalance between cell survival and pro-apoptotic signals. In this study, we demonstrate that Lyn constitutively phosphorylates the immunoreceptor tyrosine inhibitory motifs of the inhibitory cell surface co-receptor CD5, a marker of B-CLL. As a result, CD5 provides an anchoring site to Src homology 2 domain-containing phosphatase 1 (SHP-1), a known negative regulator of hematopoietic cell function, thereby triggering the negative B-cell receptor (BCR) signaling. The subsequent segregation of SHP-1 into two pools, one bound to the inhibitory co-receptor CD5 in an active form, the other in the cytosol in an inhibited conformation, proves crucial for withstanding apoptosis, as shown by the use of phosphotyrosine phosphatase-I-I, a direct inhibitor of SHP-1, or SHP-1 knockdown. These results confirm that Lyn exhibits the unique ability to negatively regulate BCR signaling, in addition to positively regulating effectors downstream of the BCR, and identify SHP-1 as a novel player in the deranged signaling network and as a potential attractive target for new therapeutic strategies in B-CLL.