Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, non-classical MHC-Ib molecule with limited polymorphism primarily involved in NK cell regulation. We found that vaccination of rhesus macaques (RM) with ΔRh157.5/.4 Rhesus Cytomegalovirus (RhCMV) vectors results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8α/β+ T cells, approximately 4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side chain interactions within a stable, open binding groove. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8+ T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.