Post-transcriptional regulationThe control of gene expression is a complex process. Even after mRNA is transcribed from DNA, mRNAs can undergo many processing and regulatory steps that influence their expression (Keene, 2010). This type of regulation, at the post-transcriptional level, is beneficial, because it allows cells to alter protein levels rapidly without requiring transcript synthesis or processing. mRNA processing begins immediately following transcription with splicing and, in some cases, results in multiple isoforms of the transcript. Upon translocation into the cytoplasm, some mRNAs directly undergo deadenylation and degradation, whereas others can be stored in cytoplasmic compartments, such as processing bodies or stress granules, until they are degraded or re-polyadenylated. Other transcripts interact with the translational machinery and are translated into protein immediately after localization to the cytoplasm. Other mRNAs interact with localization machinery to Summary Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by posttranscriptional mechanisms and how this is crucial for robust circadian rhythmicity.