Inhibition of cell division is critical for cell viability under DNA damaging conditions. In bacterial cells, DNA damage induces the SOS response, a process that inhibits cell division while repairs are being made. In coccoid bacteria, such as the human pathogen Staphylococcus aureus, the process remains poorly understood. Here we have characterized an SOS-induced cell-division inhibitor, SosA, in S. aureus. We find that in contrast to the wildtype, sosA mutant cells continue division under DNA damaging conditions with decreased viability as a consequence. Conversely, overproduction of SosA leads to cell division inhibition and reduced growth. The SosA protein is localized in the bacterial membrane and mutation of an extracellular amino acid, conserved between homologs of other staphylococcal species, abolished the inhibitory activity as did truncation of the C-terminal 30 amino acids. In contrast, C-terminal truncation of 10 amino acids lead to SosA accumulation and a strong cell division inhibitory activity. A similar phenotype was observed upon expression of wildtype SosA in a mutant lacking the membrane protease, CtpA. Thus, the extracellular C-terminus of SosA is required both for cell-division inhibition and for turnover of the protein. Functional studies showed that SosA is likely to interact with one or more divisome components and, without interfering with early cell-division events, halts cell division at a point where septum formation is initiated yet being unable to progress to septum closure. Our findings provide important insights into cell-division regulation in staphylococci that may foster development of new classes of antibiotics targeting this essential process.ImportanceStaphylococcus aureus is a serious human pathogen and a model organism for cell-division studies in spherical bacteria. We show that SosA is the DNA-damage-inducible cell-division inhibitor in S. aureus that upon expression causes cell swelling and cessation of the cell cycle at a characteristic stage post septum initiation but prior to division plate completion. SosA appears to function via an extracellular activity and is likely to do so by interfering with the essential membrane-associated division proteins, while at the same time being negatively regulated by the membrane protease CtpA. This report represents the first description of the process behind cell-division inhibition in coccoid bacteria. As several pathogens are included in this category, uncovering the molecular details of SosA activity and control can lead to identification of new targets for development of valuable anti-bacterial drugs.