Our prior finding that uPA endogenously expressed and stored in the platelets of transgenic mice prevented thrombus formation without causing bleeding, prompted us to develop a potentially clinically relevant means of generating anti-thrombotic human plateletsin vitrofrom CD34+hematopoietic cell-derived megakaryocytes. CD34+-megakaryocytes internalize and store in α-granules single-chain uPA (scuPA) and a uPA variant modified to be plasmin-resistant, but thrombin-activatable, (uPAT). Both uPAs co-localized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3 (IFITM3), but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+-\megakaryocytes was mediated in part via LRP1 and αIIbβ3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV, but not endogenous VWF, in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid-artery injury model in NOD-scid IL2rγnull (NSG) mice homozygous for VWFR1326H(a mutation switching binding VWF specificity from mouse to human glycoprotein IbmlIX) to test whether platelets derived from scuPA-MKs or uPAT-Mks would prevent thrombus formation. NSG/VWFR1326Hmice exhibited a lower thrombotic burden after carotid artery injury compared to NSG mice unless infused with human platelets or MKs, whereas intravenous injection of either uPA-containing megakaryocytes into NSG/VWFR1326Hgenerated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies suggest the potential to deliver uPA or potentially other ectopic proteins within platelet α-granules fromin vitro-generated megakaryocytes.Key pointsUnlike platelets, in vitro-grown megakaryocytes can store exogenous uPA in its α-granules.uPA uptake involves LRP1 and αIIbβ3 receptors and is functionally available from activated platelets.