We investigated the effects of testosterone and the pure anti-androgen, bicalutamide, on DNA synthesis and cell cycle in androgen-sensitive or -insensitive human and mouse cell lines by 3 H-thymidine incorporation, flow cytometry, RT-PCR and Western blotting. In androgen-dependent mouse SC-3 cells, testosterone induced DNA synthesis, shift of cell cycle distribution from G0/G1 to S/G2/M and expression of cyclin A. The induction was preceded by that of fibroblast growth factor 8 (FGF-8), and completely blocked by monoclonal antibody to FGF-8. Dihydrotestosterone (DHT) induced cyclin A expression in androgen-sensitive human prostate cancer cells, but not in androgen-independent cell lines. Bicalutamide almost completely inhibited these androgen-dependent effects both in LNCaP and SC-3 cells, but had no or limited effect on androgen-independent or FGF-8-induced DNA synthesis, and FGF-8 induced cyclin A expression. Interestingly, bicalutamide inhibited both DNA synthesis and the cyclin A expression in androgenindependent human cell lines in serum-free condition. A MEK1/2 inhibitor U0126 blocked both androgen-and rFGF-8-induced DNA synthesis. Overall, bicalutamide inhibits the cyclin A expression possibly by inhibiting FGF-8 mRNA expression and FGF-8 protein secretion but not by inhibiting FGF receptor (FGFR) signalling in androgendependent cell lines, and by other mechanisms in androgenindependent cell lines. The results suggest that combination with compounds such as FGFR signalling inhibitors may provide additional benefits to anti-androgens. It is also suggested that cyclin A could be a sensitive marker for androgen-induced cancer growth and for the growth inhibitory effects of anti-androgen.