Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder known in humans. A candidate gene for HH called HFE has recently been cloned that encodes a novel member of the major histocompatibility complex class I family. Most HH patients are homozygous for a Cys-2823Tyr (C282Y) mutation in HFE gene, which has been shown to disrupt interaction with  2 -microglobulin; a second mutation, His-633Asp (H63D), is enriched in HH patients who are heterozygous for C282Y mutation. The aims of this study were to determine the effects of the C282Y and H63D mutations on the cellular trafficking and degradation of the HFE protein in transfected COS-7 cells. The results indicate that, while the wild-type and H63D HFE proteins associate with  2 -microglobulin and are expressed on the cell surface of COS-7 cells, these capabilities are lost by the C282Y HFE protein. We present biochemical and immunof luorescence data that indicate that the C282Y mutant protein: (i) is retained in the endoplasmic reticulum and middle Golgi compartment, (ii) fails to undergo late Golgi processing, and (iii) is subject to accelerated degradation. The block in intracellular transport, accelerated turnover, and failure of the C282Y protein to be presented normally on the cell surface provide a possible basis for impaired function of this mutant protein in HH.Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized by iron overload of parenchymal cells in many organs including the liver, pancreas, heart, joints, and endocrine organs due to increased iron absorption in the gastrointestinal tract (1-4). Clinical consequences of iron accumulation in these organs include cirrhosis of the liver, hepatocellular carcinoma, diabetes, heart failure, arthritis, and hypogonadism. Within the Caucasian population, 1 in 300-400 individuals is homozygous and 1 in 8-10 individuals is heterozygous for HH (3,5). Recently, Feder et al. (6) reported that 83% of 178 American HH patients were homozygous for the same missense mutation (C282Y) in a novel major histocompatibility complex (MHC) class I-like gene, originally called HLA-H, but now designated HFE (7). [Although Feder et al. (6) originally designated the HH candidate gene HLA-H, this designation had already been assigned to a pseudogene and the HH locus had already been assigned the name HFE by the nomenclature committee (7).] Eight of nine patients with HH who were heterozygous for this mutation were found to have a different missense mutation (H63D) on the other HFE allele, although 17% of the normal population also carried one H63D allele. These findings were confirmed by Beutler et al. (8), who found that 82% of 147 HH patients were homozygous for the C282Y mutation and 10 were compound heterozygotes for C282Y and H63D alleles. Subsequent studies reported that 72-91% of French patients (9, 10), 64% of Italian patients (11), and 100% of Australian patients (12) were homozygous for the C282Y mutation. Independent support for HFE as the HH gene comes ...