Conjugated polymers are an important class of materials whose development underpins many recent advances in organic electronics. Traditionally, these polymers have been synthesized by transition-metal-catalyzed cross-couplings using organometallic reagents (e.g., Stille couplings). Although direct heteroarylation polymerization (DHAP) dispenses with the organometallic intermediates, DHAP is still a metal-catalyzed coupling, requiring both catalyst optimization and purification to remove trace metal contaminants. In contrast, a recent report from our group demonstrated that the indophenine reaction can be used as a metal-free method to prepare conjugated polymers; however, from this initial proof-of-concept study, it was not clear how it compared to other methods of conjugated polymer synthesis. Therefore, in this report, we synthesized the same polymer using three distinctly different approaches: Stille coupling, DHAP, and the indophenine reaction. This allows us to directly compare the three methodologies; we find that each offers distinct trade-offs in terms of atom economy, defects, and molecular weight.