Functional amyloids regulate vital processes in a variety of organisms from bacteria to higher eukaryotes. The development of methods enabling large-scale screening for amyloids opens up opportunity for systemic analysis of the prevalence of amyloids in nature. Using an original proteomic approach, we identified several proteins forming amyloid-like detergent-resistant aggregates in the rat brain. One of them is the FXR1 protein, which is known to regulate memory and emotions (1,2). We demonstrated that in brain FXR1 forms amyloid oligomers and insoluble detergent-resistant aggregates that strongly colocalize with amyloid-specific dye Thioflavin S and bind mRNA molecules. Moreover, we demonstrated that mRNAs colocalized with FXR1 amyloid particles are completely resistant to treatment with RNAse A. Taking into consideration that the members of ribonuclease A superfamily function in neurons (3) we can conclude that amyloid conformers of FXR1 control RNA stability in brain. Thus, in contrast to pathological amyloids that cause neurodegeneration, FXR1 is the functional amyloid in forebrain. We showed that amyloid properties of FXR1 depend on its N-terminal part from 1 to 379 amino acids. This fragment forms amyloid fibrils in vitro that bind Congo red and manifest apple-green birefringence when assayed by polarization microscopy. The amyloid-forming region of FXR1 is highly conserved in mammals. These data suggest that the ability of amyloid conformers of FXR1 to protect mRNAs is characteristic of different mammalian species, including humans.
Significance StatementAmyloids are highly ordered cross-β sheet protein fibrils associated with many neurodegenerative diseases including Alzheimer's disease. However, some amyloid proteins regulate vital processes. We identified a set of proteins that form amyloid-like aggregates in the brain of healthy rats. One of them -the FXR1 protein is known to regulate memory and emotions. FXR1 forms amyloid fibrils that bind RNA molecules and prevent their degradation in brain cortex neurons. Amyloid-forming sequence of FXR1 is highly conserved across mammals including human. Discovery of functional amyloids in mammalian brain shows that strategy aimed at the development of universal anti-amyloid drugs is unpromising. Such potential drugs should prevent or suppress formation of pathological aggregates of a certain protein, but not affect functional amyloids.