Azakie, Anthony, Jeffrey R. Fineman, and Youping He. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 291: H600 -H611, 2006. First published April 14, 2006; doi:10.1152/ajpheart.01305.2005.-Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box that is necessary for basal and cAMP-mediated activity of cTnT promoter constructs transfected in embryonic cardiomyocytes. Cardiac nuclear proteins bind the cTnT GC box in a sequence-specific fashion and consist of Sp1, Sp2, and Sp3 protein factors. By chromatin immunoprecipitation, Sp1 binds the cTnT promoter "in vivo." Cotransfected Sp1 trans-activates the cTnT promoter in cardiomyocytes in culture. Sp3 represses Sp1-mediated transcriptional activation of the cTnT gene in embryonic cardiomyocytes. Sp3 repression of Sp1-mediated cTnT promoter activation is dose dependent, inferring a mechanism of competitive binding/inhibition. To evaluate the role of Sp factors in cardiac gene expression in vivo, we have established a clinically relevant animal model of pathological cardiac hypertrophy where the fetal cardiac program is activated. In this animal model, cardiac hypertrophy results from increased left-right shunting, volume loading of the left ventricle, and pressure loading of the right ventricle. Sp1 expression is increased in all four hypertrophied cardiac chambers, whereas Sp3 expression is diminished. This observation is consistent with the in vitro activating function of Sp1 and inhibitory effects of Sp3 on activity of cTnT promoter constructs. Sp factor levels are modulated during the hypertrophic cardiac program in vivo. promoter function; transcription factors; cardiac differentiation; cell specification; cardiac muscle hypertrophy THE SP FAMILY OF TRANSCRIPTION factors is characterized by a series of three zinc fingers at the carboxy-terminal end of the protein that are preceded by glutamine-and serine-threoninerich domains (8, 28). Sp proteins bind GC boxes and the related GT/CACC-box motifs and are implicated in the recruitment and assembly of the basal transcriptional complex. GC boxes have been implicated in the regulation of cardiac promoters, but the direct effects of Sp family members on cardiac promoter activity have not been defined.We use the cardiac troponin T (cTnT) gene promoter as a model of cardiac-specific gene expression during myocardial differentiation (3,5,22,27,29). The cTnT promoter is developmentally regulated by numerous promoter motifs and transacting factors, including MCAT or transcription enhancer factor-1 (TEF-1) binding sites, AT-rich/monocyte enhancer factor-2 (MEF-2) bindin...