“…complexes I, II, IV, and V, and ATP synthase (Hurd et al, 2008;Garcia et al, 2010;Handy and Loscalzo, 2012;Wang et al, 2013;Mailloux et al, 2014;Nakamura and Lipton, 2017;van der Reest et al, 2018;Xiao et al, 2020), enzymes of the tricarboxylic acid cycle (e.g., Alpha-ketoglutarate dehydrogenase, Isocitrate dehydrogenase, Aconitase; Kil and Park, 2005;McLain et al, 2013;Yan et al, 2013;Bulteau et al, 2017;Lipton, 2017, 2020;Xiao et al, 2020), enzymes of glycolysis [e.g., Hexokinase, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH); Riederer et al, 2009;Mailloux et al, 2014;McDonagh et al, 2014;Araki et al, 2016;van der Reest et al, 2018;Xiao et al, 2020] and of fatty acid metabolism (e.g., Very long chain acyl-coenzyme A dehydrogenase; Doulias et al, 2013). Similarly, for proteostasis, redox PTMs have been reported on chaperones (e.g., Heat shock protein 70, PDI; Grunwald et al, 2014), subunits of the proteasome (Aiken et al, 2011;Jung et al, 2014;Kors et al, 2019), and proteins involved in autophagy (e.g., Autophagy Related 3, 4 and 7; Frudd et al, 2018;Pajares et al, 2018;Scherz-Shouval et al, 2019), which ultimately contribute to the regulation of protein folding and degradation (Niforou et al, 2014;Pajares et al, 2015). Redox PTMs can also regulate the activity of several transcription factors (Brigelius-Flohé and Flohé, 2011).…”