Serratia marcescens has long been recognized as an important opportunistic pathogen, but the underlying pathogenesis mechanism is not completely clear. Here, we report a key pathogenesis pathway in S. marcescens comprising the RssAB two-component system and its downstream elements, FlhDC and the dominant virulence factor hemolysin ShlBA. Expression of shlBA is under the positive control of FlhDC, which is repressed by RssAB signaling. At 37°C, functional RssAB inhibits swarming, represses hemolysin production, and promotes S. marcescens biofilm formation. In comparison, when rssBA is deleted, S. marcescens displays aberrant multicellularity favoring motile swarming with unbridled hemolysin production. Cellular and animal infection models further demonstrate that loss of rssBA transforms this opportunistic pathogen into hypervirulent phenotypes, leading to extensive inflammatory responses coupled with destructive and systemic infection. Hemolysin production is essential in this context. Collectively, a major virulence regulatory pathway is identified in S. marcescens.The Gram-negative bacterium Serratia marcescens is an important opportunistic pathogen that causes a wide range of diseases and clinical presentations with high morbidity (25). S. marcescens frequently causes outbreaks in intensive and neonatal care units, and the occurrence of multiple-antibioticresistant strains has further exacerbated clinical treatment difficulties (3, 39). Despite years of study, the mechanism of pathogenesis of S. marcescens and why it behaves as an opportunistic pathogen remain poorly understood. Unraveling the underlying mechanism of pathogenesis is thus very important for developing strategies to prevent and treat S. marcescens infection.The hemolysin ShlA was shown to be a dominant virulence factor in S. marcescens pathogenesis using a murine lung infection model (35). ShlA is responsible for the hemolytic and cytotoxic effects on erythrocytes and cultured cells, with the aid of an outer membrane protein, ShlB (28,29,47,53,54). ShlA also contributes to the release of inflammatory mediators, increases uropathogenicity, and triggers microtubule-dependent invasion of S. marcescens into epithelial cells (27,30,34,40). However, the mechanism by which the expression of shlA is regulated, especially in response to any bacterial signaling system control, remains uncharacterized. Only one reported study has indicated that iron is involved in the regulation of shlBA expression in S. marcescens (46). S. marcescens exhibits swarming, which is recognized as a highly coordinated multicellular surface migration behavior (24,51,62) that is correlated with virulence capability, antibiotic resistance, and hemolysin production in other bacteria (1,17,44). S. marcescens swarms on Luria-Bertani (LB) agar surfaces at 30°C, but not at 37°C (36). Our previous studies showed that activation of a bacterial two-component system, RssAB, comprising a sensor kinase, RssA, and a response regulator, RssB, inhibited swarming and reduced hemolysin productio...