Nitric oxide (NO) is an active and critical nitrogen oxide in the microbe-driven nitrogen biogeochemical cycle, and is of great interest to medicine and the biological sciences. As a gas molecule prior to oxygen, NO respiration represents an early form of energy generation via various reactions in prokaryotes. Major enzymes for endogenous NO formation known to date include two types of nitrite reductases in denitrification, hydroxylamine oxidoreductase in ammonia oxidation, and NO synthases (NOSs). While the former two play critical roles in shaping electron transport pathways in bacteria, NOSs are intracellular enzymes catalyzing metabolism of certain amino acids and have been extensively studied in mammals. NO interacts with numerous cellular targets, most of which are redox-active proteins. Doing so, NO plays harmful and beneficial roles by affecting diverse biological processes within bacterial physiology. Here, we discuss recent advances in the field, including NO-forming enzymes, the molecular mechanisms by which these enzymes function, physiological roles of bacterial NOSs, and regulation of NO homeostasis in bacteria.