The differentiation of naive CD4+ T cells into either proinflammatory Th1 or proallergic Th2 cells strongly influences autoimmunity, allergy, and tumor immune surveillance. We previously demonstrated that β1,6GlcNAc-branched complex-type (N-acetylglucosaminyltransferase V (Mgat5)) N-glycans on TCR are bound to galectins, an interaction that reduces TCR signaling by opposing agonist-induced TCR clustering at the immune synapse. Mgat5−/− mice display late-onset spontaneous autoimmune disease and enhanced resistance to tumor progression and metastasis. In this study we examined the role of β1,6GlcNAc N-glycan expression in Th1/Th2 cytokine production and differentiation. β1,6GlcNAc N-glycan expression is enhanced by TCR stimulation independent of cell division and declines at the end of the stimulation cycle. Anti-CD3-activated splenocytes and naive T cells from Mgat5−/− mice produce more IFN-γ and less IL-4 compared with wild-type cells, the latter resulting in the loss of IL-4-dependent down-regulation of IL-4Rα. Swainsonine, an inhibitor of Golgi α-mannosidase II, blocked β1,6GlcNAc N-glycan expression and caused a similar increase in IFN-γ production by T cells from humans and mice, but no additional enhancement in Mgat5−/− T cells. Mgat5 deficiency did not alter IFN-γ/IL-4 production by polarized Th1 cells, but caused an ∼10-fold increase in IFN-γ production by polarized Th2 cells. These data indicate that negative regulation of TCR signaling by β1,6GlcNAc N-glycans promotes development of Th2 over Th1 responses, enhances polarization of Th2 cells, and suggests a mechanism for the increased autoimmune disease susceptibility observed in Mgat5−/− mice.