Morphogenetic movements require tight spatiotemporal control over cell-cell junction lengths. Contractile forces, acting at adherens junctions, alter cell-cell contact lengths in a cyclic fashion as a mechanical ratchet. Pulsatile RhoA activity is thought to drive ratcheting through acute periods of junction contraction followed by stabilization. Currently, we lack a mechanistic understanding of if and how RhoA activity governs junction length and subsequent cell shape within epithelia. In this study we use optogenetics to exogenously control RhoA activity in model Caco-2 epithelium. We find that at short timescales, RhoA activation drives reversible junction contraction. Sustained RhoA activity drives irreversible junction shortening but the amount of shortening saturates for a single pulse. To capture these data, we develop a vertex model modified to include straindependent junction length and tension remodeling. We find that, to account for experimental data, tension remodeling requires a strain-dependent threshold. Our model predicts that temporal structuring of RhoA activity allows for subsequent tension remodeling events to overcome the limited shortening within a single pulse and this is confirmed by our experimental data. We find that RhoAmediated junction remodeling requires activities of formin and dynamin, indicating the closely interconnected activities of contractility, E-cadherin clustering, and endocytosis. Junction length is therefore regulated by the coordinated action of RhoA-mediated contractility, membrane trafficking, and adhesion receptor remodeling. Altogether these data provide insights into the underlying molecular and biophysical mechanisms of RhoA-mediated regulation of epithelial cell shape.