Control and clearance ofListeria monocytogenes is an intracellular facultative bacterium able to invade phagocytic cells and is responsible for severe pathologies in immunocompromised people, newborns and pregnant women (1). L. monocytogenes entry into the host cell is an active process involving several protein components. After a short phagosomal period (ϳ30 min), L. monocytogenes escapes to the cytosol, avoids intracellular killing, and replicates (reviewed in Ref. 2). The L. monocytogenes survival mechanism involves two steps: (i) live bacteria avoid phagosome maturation by inactivation of the endosomal trafficking regulator Rab5a, which blocks the recruitment of lysosomal proteins to the phagosomes (Lamp-1 and cathepsin-D) (3) and (ii) secretion by L. monocytogenes of listeriolysin and PI-PLC lyses the phagosomal membrane, translocates L. monocytogenes to the cytoplasm, and consequently, allows for L. monocytogenes intracellular survival (4).Control of L. monocytogenes infection and clearance is an interferon-␥ (IFN-␥) 1 -dependent process. IFN-␥ priming of macrophages (MØs) recruited at the inflammatory site triggers their listericidal abilities (5). IFN-␥ signaling modulates the expression and activation of more than 200 proteins (6). However, to date, only a few of these molecules have been shown to exert a direct role in pathogen elimination (7). Among these are (i) IGTP, a GTP-binding protein relevant for Toxoplasma clearance (8) and (ii) Nramp1, a MØ-restricted lysosomal protein involved in Leishmania, Salmonella, and Mycobacterium spp. clearance (9). In addition, IFN-␥ induces the production of reactive oxygen (ROI) and nitrogen (RNI) intermediates with microbicidal activity (10). From this set of molecules, only ROI and RNI have been shown to restrict L. monocytogenes growth (10, 11), while the other two molecules (i.e. IGTP or Nramp1) play no role at all in L. monocytogenes clearance (8, 9).Recently, we have shown that in resting MØs the inhibition of Rab5a synthesis allows for intracellular survival of a listeriolysin-defective L. monocytogenes mutant, that under normal Rab5a levels is unable to grow and fails to escape from the phagosome (12). Furthermore, we have also described that IFN-␥ signaling up-regulates Rab5a function (13). However, at this stage, no correlation between the induction of ROI and RNI by IFN-␥ and the Rab5a function has been established. Here, we show that Rab5a is a key molecule for the IFN-␥ promoted clearance of a pathogenic L. monocytogenes strain at the phagosomal stage. We show that Rab5a, in the GTP form, controls the recruitment of active Rac2 to the transformed L. monocytogenes phagolysosome and the assembly of the phagocyte NADPH oxidase with the production of toxic radicals. These Rab5a-mediated actions compromise Listeria viability within the phagolysosomes and further L. monocytogenes intracellular survival.
EXPERIMENTAL PROCEDURESCells and Reagents-J774 cells and proteose peptone-elicited peritoneal MØs from Balb/c mice were cultured in Dulbecco's modified Eag...