Serine/threonine kinase (AKT) signaling regulates diverse cellular processes and is one of the most important aberrant cell survival mechanisms associated with tumorigenesis, metastasis, and chemoresistance. Targeting AKT has become an effective therapeutic strategy for the treatment of many cancers. AKT3 (PKBγ), the least studied isoform of the AKT family, has emerged as a major contributor to malignancy. AKT3 is frequently overexpressed in human cancers, and many regulatory oncogenic or tumor suppressor small non-coding RNAs (ncRNAs), including microRNAs (miRNAs), have recently been identified to be involved in regulating AKT3 expression. Therefore, a better understanding of regulatory miRNA/AKT3 networks may reveal novel biomarkers for the diagnosis of patients with cancer and may provide invaluable information for developing more effective therapeutic strategies. The aim of this review was to summarize current research progress in the isoform-specific functions of AKT3 in human cancers and the roles of dysregulated miRNA/AKT3 in specific types of human cancers.