Realistic models of traffic flow are nonlinear and involve nonlocal effects in balance laws. Flow characteristics of different types of vehicles, such as cars and trucks, need to be described differently. Two alternatives are used here, L p -valued Lebesgue measurable density functions and signed Radon measures. The resulting solution spaces are metric spaces that do not have a linear structure, so the usual convenient methods of functional analysis are no longer applicable. Instead ideas from mutational analysis will be used, in particular the method of Euler compactness will be applied to establish the well-posedness of the nonlocal balance laws. This involves the concatenation of solutions of piecewise linear systems on successive time subintervals obtained by freezing the nonlinear nonlocal coefficients to their values at the start of each subinterval. Various compactness criteria lead to a convergent subsequence. Careful estimates of the linear systems are needed to implement this program.