Stimulation of cardiac β-adrenergic receptors (β-AR) activates both the Gs- and Gi-coupled signaling cascades, including the phosphoinositide 3 kinase (PI3K) pathway, that have important physiological implications. Multiple isoforms of PI3K exist in the heart. The goals of this study were to examine the intracellular signaling pathways linking β-AR to PI3K and to identify the PI3K isoform mediating this transactivation in a cardiac context. Acute β-AR stimulation with isoproterenol resulted in increased tyrosine kinase-associated PI3K activity and phosphorylation of Akt and p70S6K in H9c2 cardiomyocytes. Cotreatment with ICI-118,551, but not CGP-20712, abolished the increase in PI3K activity, suggesting a β2-AR-mediated event. PI3K activation was also abrogated by cotreatment with pertussis toxin, 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolol[3,4-d]pyrimidine (PP2, a selective Src-family tyrosine kinases inhibitor), or AG-1296 [selective platelet-derived growth factor receptor (PDGFR) inhibitor] but not with an inhibitor for protein kinase A, protein kinase C, Ras, adenylyl cyclase, epidermal growth factor receptor, or insulin-like growth factor-1 receptor. β-AR stimulation induced an increase in tyrosine phosphorylation of PDGFR, which was abolished by inhibition of Src either by PP2 or small interfering RNA. Moreover, H9c2 cardiomyocytes stably transfected with a vector expressing a Gβγ sequestrant peptide derived from the COOH-terminus of β-AR kinase-1 failed to activate PI3K after β-AR stimulation, suggesting Gβγ is required for the transactivation. Furthermore, acute β-AR stimulation in vivo resulted in increases in PDGFR-associated PI3K and PI3Kα isoform activities but not the activities of other isoforms (PI3Kβ, -δ, -γ) in adult mouse heart. Taken together, these data provide in vitro and in vivo evidence for a novel mechanism of β-AR-mediated transactivation of cardiac PI3Kα via sequential involvement of Gαi/Gβγ, Src, and PDGFR.