HVCN1 (Hydrogen voltage-gated channel 1) is the only mammalian voltage-gated proton channel. In human B lymphocytes, HVCN1 associates with the B-cell receptor (BCR) and is required for optimal BCR signaling and redox control. HVCN1 is expressed in malignant B cells that rely on BCR signaling, such as chronic lymphocytic leukemia (CLL) cells. However, little is known about its regulation in these cells. We found that HVCN1 was expressed in B cells as two protein isoforms. The shorter isoform (HVCN1 S ) was enriched in B cells from a cohort of 76 CLL patients. When overexpressed in a B-cell lymphoma line, HVCN1 S responded more profoundly to protein kinase C-dependent phosphorylation. This more potent enhanced gating response was mediated by increased phosphorylation of the same residue responsible for enhanced gating in HVCN1 L , Thr 29 . Furthermore, the association of HVCN1 S with the BCR was weaker, which resulted in its diminished internalization upon BCR stimulation. Finally, HVCN1 S conferred a proliferative and migratory advantage as well as enhanced BCR-dependent signaling. Overall, our data show for the first time, to our knowledge, the existence of a shorter isoform of HVCN1 with enhanced gating that is specifically enriched in malignant B cells. The properties of HVCN1 S suggest that it may contribute to the pathogenesis of BCR-dependent B-cell malignancies. is a small protein that conducts protons across membranes selectively (1, 2) and in a regulated manner. Previously, we described its function in B lymphocytes, where proton channels sustain B-cell receptor (BCR) signaling via regulation of reactive oxygen species production by the NADPH oxidase enzyme complex (3). In addition, we found HVCN1 to be directly associated with the BCR. Upon receptor stimulation, the BCR and HVCN1 were cointernalized to late endosomal/lysosomal organelles called "MIICs," or MHC class II-containing compartments, where antigens bound to the BCR are digested into small peptides and loaded onto MHC class II molecules for presentation to T cells (3).HVCN1 is expressed not only by normal but also by malignant B cells, such as those in chronic lymphocytic leukemia (CLL) (3). CLL cells are characterized by their reliance on BCR signaling for survival and growth (4), so it is possible that they maintain or upregulate HVCN1 expression to sustain their growth. Other tumor cells, such as those in breast (5) and colorectal cancer (6), have been found to rely on HVCN1 for survival. In these tumor cells, proton channels prevent excessive acidification of the cytoplasm and allow increased cell migration. In malignant B cells, HVCN1 may regulate intracellular pH and at the same time sustain BCR signaling. However, its precise roles remain to be elucidated.We show here that CLL cells and other B-cell lines specifically express higher levels of a shorter isoform of HVCN1, HVCN1 S . We identified the existence of two distinct isoforms of relatively similar size when immunoblotting B-cell lysates with an HVCN1-specific antibody (3). HVCN1 S ...