Before the era of immune checkpoint blockade, a meta-analysis encompassing fifteen trials reported that adjuvant IFN-α significantly reduces the risk of relapse and improves survival of ulcerated melanoma (UM) with no benefit for higher doses compared to lower doses. IFNa2b affects many cell intrinsic features of tumor cells and modulates the host innate and cognate immune responses. To better understand the biological traits associated with ulceration that could explain the efficacy of prophylactic type 1 IFN, we performed immunohistochemical analysis of various molecules (major histocompatibility complex class I and class II, MX Dynamin Like GTPase 1 (MX1), inducible Nitric-Oxide Synthase (iNOS) or CD47) in two retrospective cohorts of melanoma patients, one diagnosed with a primary cutaneous melanoma (1995-2013, N = 172, among whom 49% were ulcerated melanoma (UM)) and a second one diagnosed with metastatic melanoma amenable to lymph node resection (EORTC 18952 and 18991 trials, N = 98, among whom 44% were UM). We found that primary and metastatic UM exhibit higher basal expression of MHC class I molecules, independently of Breslow thickness, histology and lymphocytic infiltration compared with NUM and that primary UM harbored higher constitutive levels of the antiviral protein Mx1 at the border of tumor beds than NUM. These findings suggest that UM expand in a tumor microenvironment where chronic exposure to type 1 IFN could favor a response to exogenous IFNs.