Background: Breast cancer (BC) is the most prevalent cancer among females globally. microRNAs (miRNAs) could regulate the expression levels of cancer-related genes through binding with target mRNAs. In various cancers, the abnormal expression of miR-130b has been detected. We aims to investigate the molecular mechanism and biological function of miR130b in breast cancer.Methods: We obtained two microRNA expression profiles from the Gene Expression Omnibus (GEO) database, including GSE45666 and GSE26659. We identified differentially expressed miRNAs (DE-miRNAs) between BC tissue and normal breast tissue based on the GEO2R web tool. DE-miRNAs were filtered by significant prognostic value resulting from Kaplan–Meier plotter. We used the JASPAR database to explore upstream regulators of miR-130b. The potential molecular mechanisms of miR-130b correlation genes were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in WebGestalt. Protein–protein interaction (PPI) network of miR-130b target genes was constructed by STRING. Cytoscape software was used to visualize the PPI network and hub genes.Results: miR-130b was highly expressed in breast cancer tissues, which positively correlates with poor prognostic. JASPAR revealed THAP11 might be the upstream regulator of miR-130b. In addition, GO, and KEGG pathway revealed that miR-130b positively regulated PFKP, STAT1, SRC, and NOTCH2, participating in the Thyroid hormone signaling pathway. The PPI network further identified that AR, KIT, and ESR1 as hub genes in BC development.Conclusion: miR-130b, which is regulated by THAP11, acts as an oncogene and prognostic biomarker in BC by mediating the Thyroid hormone signaling pathway and potential target genes. miR-130b might be a novel therapeutic target for BC treatment.