Calcium phosphate cements (CPCs) are extensively used as synthetic bone grafts, but their poor toughness limits their use to nonload-bearing applications. Reinforcement through introduction of fibers and yarns has been evaluated in various studies but always resulted in a decrease in elastic modulus or bending strength when compared to the CPC matrix. The aim of the present work was to improve the interfacial adhesion between fibers and matrix to obtain tougher biocompatible fiberreinforced calcium phosphate cements (FRCPCs). This was done by adding a polymer solution to the matrix, with chemical affinity to the reinforcing chitosan fibers, namely trimethyl chitosan (TMC). The improved wettability and chemical affinity of the chitosan fibers with the TMC in the liquid phase led to an enhancement of the interfacial adhesion. This resulted in an increase of the work of fracture (several hundred-fold increase), while the elastic modulus and bending strength were maintained similar to the materials without additives. Additionally the TMC-modified CPCs showed suitable biocompatibility with an osteoblastic cell line.
Graphical Abstract (for review)
Highlights
HIGHLIGHTS• Calcium phosphate cements were reinforced with chitosan fibers and soluble chitosan• The chemical affinity of fibers and matrix improved interfacial adhesion• Mechanical reinforcement was achieved thanks to a good fiber-matrix adhesion• Fiber-reinforced cements were significantly tougher than non-reinforced analogues • The modified cement matrix supported osteoblast proliferation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 -2 -
AbstractCalcium phosphate cements (CPCs) are extensively used as synthetic bone grafts, but their poor toughness limits their use to non-load-bearing applications. Reinforcement through introduction of fibers and yarns has been evaluated in various studies but always resulted in a decrease in elastic modulus or bending strength when compared to the CPC matrix. The aim of the present work was to improve the interfacial adhesion between fibers and matrix to obtain tougher biocompatible fiber-reinforced calcium phosphate cements (FRCPCs). This was done by adding a polymer solution to the matrix, with chemical affinity to the reinforcing chitosan fibers, namely trimethyl chitosan (TMC). The improved wettability and chemical affinity of the chitosan fibers with the TMC in the liquid phase led to an enhancement of the interfacial adhesion. This resulted in an increase of the work of fracture (several hundred-fold increase), while the elastic modulus and bending strength were maintained similar to the materials without additives. Additionally the TMC-modified CPCs showed suitable biocompatibility with an osteoblastic cell line.