Reproductive isolation is essential for the process of speciation and much has been learned in recent years about the ecology and underlying genetics of reproductive barriers. But plant species are typically isolated not by a single factor, but by a large number of different pre-and postzygotic barriers, and their potentially complex interactions. This phenomenon has often been ignored to date. Recent studies of the relative importance of different isolating barriers between plant species pairs concluded that prezygotic isolation is much stronger than postzygotic isolation. But studies of the patterns of reproductive isolation in plants did not find that prezygotic isolation evolves faster than postzygotic isolation, in contrast to most animals. This may be due to the multiple premating barriers that isolate most species pairs, some of which may be controlled by few genes of major effect and evolve rapidly, whereas others have a complex genetic architecture and evolve more slowly. Intrinsic postzygotic isolation in plants is correlated with genetic divergence, but some instrinsic postzygotic barriers evolve rapidly and are polymorphic within species. Extrinsic postzygotic barriers are rarely included in estimates of different components of reproductive isolation. Much remains to be learned about ecological and molecular interactions among isolating barriers. The role of reinforcement and reproductive character displacement in the evolution of premating barriers is an open topic that deserves further study. At the molecular level, chromosomal and genic isolation factors may be associated and act in concert to mediate reproductive isolation, but their interactions are only starting to be explored.