To assess the efficacy and feasibility of vertebroplasty and posterior short-segment pedicle screw fixation for the treatment of traumatic lumbar burst fractures. Short-segment pedicle screw instrumentation is a well described technique to reduce and stabilize thoracic and lumbar spine fractures. It is relatively a easy procedure but can only indirectly reduce a fractured vertebral body, and the means of augmenting the anterior column are limited. Hardware failure and a loss of reduction are recognized complications caused by insufficient anterior column support. Patients with traumatic lumbar burst fractures without neurologic deficits were included. After a short segment posterior reduction and fixation, bilateral transpedicular reduction of the endplate was performed using a balloon, and polymethyl methacrylate cement was injected. Pre-operative and post-operative central and anterior heights were assessed with radiographs and MRI. Sixteen patients underwent this procedure, and a substantial reduction of the endplates could be achieved with the technique. All patients recovered uneventfully, and the neurologic examination revealed no deficits. The postoperative radiographs and magnetic resonance images demonstrated a good fracture reduction and filling of the bone defect without unwarranted bone displacement. The central and anterior height of the vertebral body could be restored to 72 and 82% of the estimated intact height, respectively. Complications were cement leakage in three cases without clinical implications and one superficial wound infection. Posterior short-segment pedicle fixation in conjunction with balloon vertebroplasty seems to be a feasible option in the management of lumbar burst fractures, thereby addressing all the three columns through a single approach. Although cement leakage occurred but had no clinical consequences or neurological deficit.