2023
DOI: 10.31294/inf.v10i2.16000
|View full text |Cite
|
Sign up to set email alerts
|

Rekomendasi Merk Mobil Untuk Calon Pembeli Menggunakan Algoritma Decision Tree

Bima Hamdani Mawaridi,
Muhammad Faisal

Abstract: Salah satu negara di dunia dengan jumlah penduduk yang cukup besar adalah Indonesia. Dalam aktivitas sehari-hari, mobil merupakan modal transportasi yang mayoritas dipakai oleh masyarakat selain sepeda motor. Saat ini merek mobil yang diproduksi di Indonesia maupun langsung diimpor dari luar negeri semakin banyak dengan berbagai keunggulan masingmasing. Hal tersebut menyebabkan pembeli yang mau membeli mobil seringkali kesulitan untuk menemukan merek mobil yang memenuhi spesifikasi yang diinginkan. Oleh karena… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 15 publications
0
2
0
Order By: Relevance
“…Based on Table 5, the classification of heart disease using the Decision Tree algorithm and Random Forest using the analysis of the influence of the max depth parameter (3,4,5,6,7) produces the best accuracy of 99.29% in the Random Forest algorithm with max depth = 7, and Decision Tree 98.05% with max depth = 7 on split training and testing data 90:10. The higher the max depth value in research [20], [28] states that it can increase accuracy, but other factors such as split data also affect accuracy results, such as in split data 60:40, the accuracy on Decision Tree testing data max depth = 3 produces 82.68% accuracy, but at max depth = 4, the accuracy decreases to 82.19%.…”
Section: Modeling and Evaluationmentioning
confidence: 99%
See 1 more Smart Citation
“…Based on Table 5, the classification of heart disease using the Decision Tree algorithm and Random Forest using the analysis of the influence of the max depth parameter (3,4,5,6,7) produces the best accuracy of 99.29% in the Random Forest algorithm with max depth = 7, and Decision Tree 98.05% with max depth = 7 on split training and testing data 90:10. The higher the max depth value in research [20], [28] states that it can increase accuracy, but other factors such as split data also affect accuracy results, such as in split data 60:40, the accuracy on Decision Tree testing data max depth = 3 produces 82.68% accuracy, but at max depth = 4, the accuracy decreases to 82.19%.…”
Section: Modeling and Evaluationmentioning
confidence: 99%
“…Based on the research [27], [28], the Decision Tree has advantages in ease of interpretation, and visualization, and is suitable for small and medium datasets with little data pre-processing. However, its drawbacks include susceptibility to overfitting and not always producing the optimal model.…”
Section: Introductionmentioning
confidence: 99%