LiCi-2 is an ultralightweight block cipher designed for constrained IoT devices. It is a successor of LiCi and has even better performance in both software and hardware implementation. In this paper, based on the idea of related-key multiple impossible differential cryptanalysis, a key recovery attack on full-round LiCi-2 is proposed. First, an interesting property is revealed that, with a single bit difference in the related key, a 10-round differential character with probability of 1 exists on LiCi-2. With an automatic approach, the boundaries of impossible differential distinguishers in terms of single-key setting and related-key setting are explored. Under our construction method, the longest length is 8 rounds for single-key setting and 18 rounds for related-key setting. Finally, based on these 18-round distinguishers, a 25-round key recovery attack is proposed with adding 3 rounds before and 4 rounds after the distinguisher. Our attack needs one related key. The time complexity for our attack is O(2123.44), the memory complexity is O(294), and the data complexity is O(260.68). As far as we know, no full-round attack has previously been reported on LiCi-2.