Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The perceived color of human skin is the result of the interaction of environmental lighting with the skin. Only by resorting to human skin spectral reflectance, it is possible to obtain physical outcomes of this interaction. The purpose of this work was to provide a cured and validated database of hyperspectral images of human faces, useful for several applications, such as psychophysics-based research, object recognition, and material modeling. The hyperspectral imaging data from 29 human faces with different skin tones and sexes, under constant lighting and controlled movements, were described and characterized. Each hyperspectral image, which comprised spectral reflectance of the whole face from 400 to 720 nm in 10 nm steps at each pixel, was analyzed between and within nine facial positions located at different areas of the face. Simultaneously, spectral measurements at the same nine facial positions using conventional local point and/or contact devices were used to ascertain the data. It was found that the spectral reflectance profile changed between skin tones, subjects, and facial locations. Important local variations of the spectral reflectance profile showed that extra care is needed when considering average values from conventional devices at the same area of measurement.
The perceived color of human skin is the result of the interaction of environmental lighting with the skin. Only by resorting to human skin spectral reflectance, it is possible to obtain physical outcomes of this interaction. The purpose of this work was to provide a cured and validated database of hyperspectral images of human faces, useful for several applications, such as psychophysics-based research, object recognition, and material modeling. The hyperspectral imaging data from 29 human faces with different skin tones and sexes, under constant lighting and controlled movements, were described and characterized. Each hyperspectral image, which comprised spectral reflectance of the whole face from 400 to 720 nm in 10 nm steps at each pixel, was analyzed between and within nine facial positions located at different areas of the face. Simultaneously, spectral measurements at the same nine facial positions using conventional local point and/or contact devices were used to ascertain the data. It was found that the spectral reflectance profile changed between skin tones, subjects, and facial locations. Important local variations of the spectral reflectance profile showed that extra care is needed when considering average values from conventional devices at the same area of measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.