After the onset of plate collision in the Alps, at 32-34 Ma, the deep structure of the orogen is inferred to have changed dramatically: European plate break-offs in various places of the Alpine arc, as well as a possible reversal of subduction polarity in the eastern Alps have been proposed. We review body-wave tomographic studies, compare them to our surface-wave-derived model for the uppermost 200 km, and reinterpret them in terms of slab geometries. We infer that the shallow subducting portion of the European plate is likely detached under both the western and eastern (but not the central) Alps. The Alps-Dinarides 5 transition may be explained by a combination of European and Adriatic subduction. This would imply that the deep, highvelocity anomaly (>200 km depth) mapped by tomographers under the eastern Alps is a detached segment of the European plate. The shallower fast anomaly (100-200 km depth) can be ascribed to European or Adriatic subduction, or both. These findings are compared to previously proposed models for the eastern Alps in terms of slab geometry, but also integrated in a new, alternative geodynamic scenario that best fits both tomographic images and geological constraints.