Iterative substitution of the multidimensional Marchenko equation has been introduced recently to integrate internal multiple reflections in the seismic imaging process. In so-called Marchenko imaging, a macro velocity model of the subsurface is required to meet this objective. The model is used to back-propagate the data during the first iteration and to truncate integrals in time during all successive iterations. In case of an erroneous model, the image will be blurred (akin to conventional imaging) and artifacts may arise from inaccurate integral truncations. However, the scheme is still successful in removing artifacts from internal multiple reflections. Inspired by these observations, we rewrote the Marchenko equation, such that it can be applied early in a processing flow, without the need of a macro velocity model. Instead, we have required an estimate of the two-way traveltime surface of a selected horizon in the subsurface. We have introduced an approximation, such that adaptive subtraction can be applied. As a solution, we obtained a new data set, in which all interactions (primaries and multiples) with the part of the medium above the picked horizon had been eliminated. Unlike various other internal multiple elimination algorithms, the method can be applied at any specified target horizon, without having to resolve for internal multiples from shallower horizons. We successfully applied the method on synthetic data, where limitations were reported due to thin layers, diffraction-like discontinuities, and a finite acquisition aperture. A field data test was also performed, in which the kinematics of the predicted updates were demonstrated to match with internal multiples in the recorded data, but it appeared difficult to subtract them.