The task of Compositional Zero-Shot Learning (CZSL) is to recognize images of novel state-object compositions that are absent during the training stage. Previous methods of learning compositional embedding have shown effectiveness in closed-world CZSL. However, in Open-World CZSL (OW-CZSL), their performance tends to degrade significantly due to the large cardinality of possible compositions. Some recent works separately predict simple primitives (i.e., states and objects) to reduce cardinality. However, they consider simple primitives as independent probability distributions, ignoring the heavy dependence between states, objects, and compositions. In this paper, we model the dependence of compositions via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility relations between simple primitives, e.g., hairy is more feasible with cat than with building in the real world. Contextuality-dependence represents the contextual variance in images, e.g., cat shows diverse appearances under the state of dry and wet. We design Semantic Attention (SA) and generative Knowledge Disentanglement (KD) to learn the dependence of feasibility and contextuality, respectively. SA captures semantics in compositions to alleviate impossible predictions, driven by the visual similarity between simple primitives. KD disentangles images into unbiased feature representations, easing contextual bias in predictions. Moreover, we complement the current compositional probability model with feasibility and contextuality in a compatible format. Finally, we conduct comprehensive experiments to analyze and validate the superior or competitive performance of our model, Semantic Attention and knowledge Disentanglement guided Simple Primitives (SAD-SP), on three widely-used benchmark OW-CZSL datasets.