Pre-trained multilingual language models, e.g., multilingual-BERT, are widely used in crosslingual tasks, yielding the state-of-the-art performance. However, such models suffer from a large performance gap between source and target languages, especially in the zero-shot setting, where the models are fine-tuned only on English but tested on other languages for the same task. We tackle this issue by incorporating language-agnostic information, specifically, universal syntax such as dependency relations and POS tags, into language models, based on the observation that universal syntax is transferable across different languages. Our approach, named COunterfactual SYntax (COSY), includes the design of SYntaxaware networks as well as a COunterfactual training method to implicitly force the networks to learn not only the semantics but also the syntax. To evaluate COSY, we conduct cross-lingual experiments on natural language inference and question answering using mBERT and XLM-R as network backbones. Our results show that COSY achieves the stateof-the-art performance for both tasks, without using auxiliary dataset. 1
"I love apples ."Pre-trained Language Model