Patrolling represents a potential application area for multi-robot systems, as it can enable efficient surveillance. A key aspect in facilitating the real-world applications of such missions is the enhancement of situation awareness of the base station (BS), in addition to ensuring well-coordinated patrol behavior. This paper addresses this requirement by proposing a layered patrol algorithm designed to maintain network connectivity with the BS. The novelty of this research lies in the distributed nature of the algorithm, despite the presence of the BS. Each robot independently determines its behavior based on local information while concurrently preserving connectivity to the BS. Additionally, this study introduces a novel performance metric to assess the situation awareness of the BS, focusing on the algorithm’s ability to provide prompt information about mission progress. Simulated missions revealed that the proposed algorithm outperformed existing algorithms, visited locations of interest more frequently and comprehensively, and provided the BS with improved situation awareness. Enhancing situation awareness may enable human operators to quickly gain insights into the system’s behavior based on mission progress, allowing for timely interventions if necessary. This capability contributes to improving human trust in autonomous systems.