Subsurface drainage systems can be a significant pathway for P transfer from some soils to surface waters. The objective of the study was to determine P concentration in tile-drainage water and its relationship to P status in surface soils (A horizons) from an intensively cultivated area in the Montreal Lowlands. The profiles of 43 soil units were characterized for their P contents and pedogenic properties. Tile-drainage water P concentrations were monitored over a 3-y r period on a weekly basis on 10 soil units, and four times during each growing season for the other 33 units. The soil units were grouped into lower and higher P sorbing soils using multiple discriminant equations developed in an earlier related study. The A horizons of the lower P sorbing soils had an elevated P saturation degree [mean Mehlich(III) P/Al = 17%] associated with total P concentrations in tile-drainage water consistently greater than the surface water quality standard of 0.03 mg total P L-1. Conversely, low P concentrations in tile-drainage waters (< 0.03 mg L-1) and a moderate mean Mehlich(III) P/Al ratio of 8% were observed in the higher P sorbing soil group. Total P concentrations in drainage systems were significantly related to soil P status in surface soils. Grouping soils according to their P sorption capacities increased the power of prediction based on only one soil variable. However, accurate predictions in terms of drain P concentration can hardly be obtained unless large dataset and other factors related to field management practices and hydrology of the sites are also considered. Therefore, a better alternative to predict the risk of P leaching is to work in terms of risk classes and rely on a multiple factor index. Key words: Tile-drainage water, phosphorus, P transfer, P loss, degree of soil P saturation, phosphorus index