“…Hmisc. Harrell (2010) MI 2 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat ch='closest',nk=0,curtail=T,boot.method="approximate bayesian") MI 3 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat ch='closest',nk=0,curtail=F,boot.method="approximate bayesian") MI 4 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat ch='weighted',nk=0,curtail=T,boot.method="approximate bayesian") MI 5 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match=' closest',nk=0,curtail=T,boot.method="approximate bayesian") MI 6 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match=' weighted',nk=0,curtail=T,boot.method="approximate bayesian") MI 7 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat ch='closest',nk=c(0,3:5),B=10,curtail=T,boot.method= "approximate bayesian") MI 8 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat ch='closest',nk=c(0,3:5),B=10,tlinear=F,curtail=T,boot.method="app roximate bayesian") mi. Gelman (2010) MI 9 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="resh uffling",K=1,post.run.iter=20),n.iter=30) MI 10 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="fadi ng",pct.aug=10,post.run.iter=20),n.iter=30) mice.…”