2014
DOI: 10.1007/s11856-014-1052-9
|View full text |Cite
|
Sign up to set email alerts
|

Relation spaces of hyperplane arrangements and modules defined by graphs of fiber zonotopes

Abstract: Abstract. We study the exactness of certain combinatorially defined complexes which generalize the Orlik-Solomon algebra of a geometric lattice. The main results pertain to complex reflection arrangements and their restrictions. In particular, we consider the corresponding relation complexes and give a simple proof of the n-formality of these hyperplane arrangements. As an application, we are able to bound the Castelnouvo-Mumford regularity of certain modules over polynomial rings associated to Coxeter arrange… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?