Advances in imaging and display engineering have given rise to new and improved image and video applications that aim to maximize visual quality under given resource constraints (e.g., power, bandwidth). Because the human visual system is an imperfect sensor, the images/videos can be represented in a mathematically lossy fashion but with enough fidelity that the losses are visually imperceptible-commonly termed "visually lossless." Although a great deal of research has focused on gaining a better understanding of the limits of human vision when viewing natural images/video, a universally or even largely accepted definition of visually lossless remains elusive. Differences in testing methodologies, research objectives, and target applications have led to multiple ad-hoc definitions that are often difficult to compare to or otherwise employ in other settings. We present a compendium of technical experiments relating to both vision science and visual quality testing that together explore the research and business perspectives of visually lossless image quality, as well as review recent scientific advances. Together, the studies presented in this paper suggest that a single definition of visually lossless quality might not be appropriate; rather, a better goal would be to establish varying levels of visually lossless quality that can be quantified in terms of the testing paradigm.