Background
Oral health could influence cognitive function by stimulating brain activity and blood flow. The quantified oral status from oral inflammation, frailty and masticatory performance were rarely applied to the cognitive function screening. We aimed to adopt non-invasive digital biomarkers to quantify oral health and employ machine learning algorithms to detect cognitive decline in the community.
Methods
We conducted a prospective case-control study to recruit 196 participants between 50 and 80 years old from Puzi Hospital (Chiayi County, Taiwan) between December 01, 2021, and December 31, 2022, including 163 with normal cognitive function and 33 with cognitive decline. Demographics, daily interactions, electronically stored medical records, masticatory ability, plaque index, oral diadochokinesis (ODK), periodontal status, and digital oral health indicators were collected. Cognitive function was classified, and confirmed mild cognitive impairment diagnoses were used for sensitivity analysis.
Results
The cognitive decline group significantly differed in ODK rate (P = 0.003) and acidity from SILL-Ha (P = 0.04). Younger age, increased social interactions, fewer cariogenic bacteria, high leukocytes, and high buffering capacity led to lower risk of cognitive decline. Patients with slow ODK, high plaque index, variance of hue (VOH) from bicolor chewing gum, and acidity had increased risk of cognitive decline. The prediction model area under the curve was 0.86 and was 0.99 for the sensitivity analysis.
Conclusions
A digital oral health biomarker approach is feasible for tracing cognitive function. When maintaining oral hygiene and oral health, cognitive status can be assessed simultaneously and early monitoring of cognitive status can prevent disease burden in the future.