The characteristics of spark ignition with a constant volume combustion chamber (CVCC) is evaluated for the efficiency of capacitive-assisted ignition (CAI), such as spark kernel and flame growth. The conventional spark method and matching effect of high voltage (MEHV) method are evaluated to compare the spark growth distribution characteristics. To do this study, a plasma system is used and is consisted of input power, three capacitors, a transformer, high voltage cable, J-type of a spark plug, diode, and CVCC. The experiment is conducted under various operating conditions, such as 1 bar, 295 K of initial temperature, 50, 100, 150 V of ignition box, 400 V of MEHV, 0.7 ms of spark duration, and 0 kΩ of plug resistor. The results show that the spark growth at the initial voltages of 100 V and 150 V has the same characteristic, and the surface area is increased by 13 mm2 at 150 V compared to 100 V because capacitance energy stored in three capacitors is efficiently induced by the effect of dielectric breakdown and electron collision. Consequently, the spark growth of MEVH is widely distributed atmospheric more than the conventional spark, and the internal temperature of the spark kernel could be presumed to change the non-thermal plasma to thermal plasma by MEHV.