Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Climate change is expected to result in increased occurrences of extreme weather events such as heat waves and cold spells. Urban planning responses are crucial for improving the capacity of cities and communities to deal with significant temperature variations across seasons. This study aims to investigate the relationship between urban temperature fluctuations and urban morphology throughout the four seasons. Through quadrant and statistical analyses, built-environment factors are identified that moderate or exacerbate seasonal land surface temperatures (LSTs). The focus is on Seoul, South Korea, as a case study, and seasonal LST values are calculated at both the grid (100 m × 100 m) and street block levels, incorporating factors such as vegetation density, land use patterns, albedo, two- and three-dimensional building forms, and gravity indices for large forests and water bodies. The quadrant analysis reveals a spatial segregation between areas demonstrating high LST adaptability (cooler summers and warmer winters) and those displaying LST vulnerability (hotter summers and colder winters), with significant differences in vegetation and building forms. Spatial regression analyses demonstrate that higher vegetation density and proximity to water bodies play key roles in moderating LSTs, leading to cooler summers and warmer winters. Building characteristics have a constant impact on LSTs across all seasons: horizontal expansion increases the LST, while vertical expansion reduces the LST. These findings are consistent for both grid- and block-level analyses. This study emphasizes the flexible role of the natural environment in moderating temperatures.
Climate change is expected to result in increased occurrences of extreme weather events such as heat waves and cold spells. Urban planning responses are crucial for improving the capacity of cities and communities to deal with significant temperature variations across seasons. This study aims to investigate the relationship between urban temperature fluctuations and urban morphology throughout the four seasons. Through quadrant and statistical analyses, built-environment factors are identified that moderate or exacerbate seasonal land surface temperatures (LSTs). The focus is on Seoul, South Korea, as a case study, and seasonal LST values are calculated at both the grid (100 m × 100 m) and street block levels, incorporating factors such as vegetation density, land use patterns, albedo, two- and three-dimensional building forms, and gravity indices for large forests and water bodies. The quadrant analysis reveals a spatial segregation between areas demonstrating high LST adaptability (cooler summers and warmer winters) and those displaying LST vulnerability (hotter summers and colder winters), with significant differences in vegetation and building forms. Spatial regression analyses demonstrate that higher vegetation density and proximity to water bodies play key roles in moderating LSTs, leading to cooler summers and warmer winters. Building characteristics have a constant impact on LSTs across all seasons: horizontal expansion increases the LST, while vertical expansion reduces the LST. These findings are consistent for both grid- and block-level analyses. This study emphasizes the flexible role of the natural environment in moderating temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.